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Abstract  

Regression analysis constitutes a collection of statistical methodologies employed for the estimation of 

relationships between a dependent variable and one or several independent variables. The Regression 

Analysis (RA) generates a series of regression equations wherein the coefficients signify the 

relationship between each independent variable and the dependent variable. Regression analysis mainly 

consist of 2 important function known as the primary and the secondary function. In the primary 

function first RA is used for predicting and forecasting the places where its uses overlap with that of 

the machine learning (ML) field. In the secondary function it tries to infer in the association between 

the dependent variable and the independent variable is examined. This research paper endeavors to 

elucidate the intricacies of regression analysis comprehensively. The unknown coefficients are 

determined utilizing the data obtained from experiments or alternative sources, employing Legendres 

principle of least squares errors. In this document, regression equations have been employed to forecast 

the ultimate load and ultimate deflection values. Then later the predicted value was compared with the 

experimental value and the result of it was displayed in further sections.  
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1. INTRODUCTION  

Regression analysis stands out as an incredibly powerful statistical tool that facilitates the exploration 

and examination of intricate relationships that exist between various variables, allowing researchers and 

analysts to delve deeply into their interconnections. When the analysis focuses solely on one 

explanatory variable, this specific approach is distinguished by the term simple regression, which serves 

as a fundamental building block in the world of statistical analysis. On the other hand, when one 

employs multiple regression techniques, [1] it opens the door to the inclusion of additional factors, 

thereby allowing these variables to be analyzed independently yet simultaneously, enriching the overall 

understanding of the data at hand. This method proves to be immensely valuable as it quantifies the 

influence of various factors operating concurrently on a single dependent variable, revealing the 

complex web of interactions that may be at play. Essentially, [2]regression analysis acts as a meticulous 

procedure for establishing a relationship between known input variables and an output parameter, all 

underpinned by robust statistical principles that guide the analysis. 

The overarching technique in regression involves making certain assumptions about the nature of the 

relationship that exists between the input parameters and the results, [3] which is often expressed 

through a mathematical form that includes a series of unknown coefficients representing the strength of 
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these connections. To uncover these unknown coefficients, which are critical to the accuracy of the 

model, analysts rely on data obtained from experiments or other reliable sources, [4] employing the 

sophisticated Legendre's principle of least squared errors as a guiding framework for their calculations. 

Legendre's principle of least squared errors serves as a versatile and general-purpose curve-fitting 

technique, [5] which aids in selecting the optimal values for these unknown coefficients, often referred 

to as regression coefficients, in a manner that maximizes the agreement between the predicted outcomes 

and the actual target results to the greatest extent possible. 

As we delve deeper into the fascinating realm of regression analysis, [6] we encounter a plethora of 

terms and concepts that are intricately woven into this multifaceted discipline, each deserving of 

attention and explanation in the following subsections. In fact, [7] regression analysis can be categorized 

into several distinct types, including but not limited to Linear Regression, which explores linear 

relationships, Logistic Regression, which is designed for binary outcomes, [8] Ridge Regression, which 

addresses multicollinearity, Lasso Regression, which performs both variable selection and 

regularization, Polynomial Regression, [9] which captures non-linear relationships, and [10] Bayesian 

Regression, which incorporates prior knowledge into the analysis. Each of these categories offers 

unique insights and methodologies, [11] illustrating the rich diversity and adaptability of regression 

analysis as a tool for understanding complex data relationships [12].  

1.1 Regression 

The artful approach employed for molding curves, be they linear or non-linear in their designated form. 

The aim of regression is to ascertain the elusive coefficients within an equation. The structure of the 

equation is presumed beforehand in a manner that ideally aligns with the expected connection between 

the input and the output (Figure 1). 

 

Figure 1 Regression flow process  
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1.2 Regression Coefficient 

The regression coefficient serves as a mysterious element woven into the equation, designed to adjust 

the input variable or a blend of input variables. By tackling the regression challenge through the lens of 

minimizing squared errors, every regression coefficient is thoroughly assessed. 

1.3 Legendre's Principle of Least Squared Errors 

Legendre's principle of minimal squared discrepancies seeks to address the regression challenge by 

enforcing the condition that the square of the disparity between the actual outcome and the predicted 

value from the equation must be minimized. This is achieved by calculating the derivative of the square 

of the error concerning each unknown coefficient in the proposed equation. Each derivative yields a 

distinct equation, and the total number of equations generated will match the total number of unknown 

regression coefficients that need to be determined. 

1.4 Karl Pearson's Coefficient of Correlation 

The correlation coefficient established by Karl Pearson is a numerical value ranging from 0 to 1, which 

gauges the intensity of the connection between the input variables and their corresponding outcomes. 

A value near unity for Karl Pearson's correlation coefficient indicates a robust relationship between the 

inputs and the resultant values. This correlation coefficient remains uninfluenced by the forecasts 

derived from regression equations; it solely reflects the characteristics of the provided set of inputs and 

outputs. 

2 2
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1.5 Sum of Squared Errors (SSE) 

The total of squared discrepancies is the aggregation of the squares of the variance between the values 

anticipated by the regression formula (or another method) and the true outcomes anticipated for the 

specified input values. A greater SSE signifies a more significant divergence of the predicted values 

from the anticipated results. 
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1.6 Mean Squared Error (MSE) 

Mean squared error is calculated by taking the total of squared discrepancies and dividing it by the 

count of the summed values. The MSE serves as a superior gauge of error compared to SSE, as it 

represents the squared error for each individual data point. 
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1.7 Root Mean Squared Error (RMSE) 

The root mean squared error is derived as the square root of the Mean Squared Error. This metric 

highlights the degree of divergence from the anticipated value, either above or below it. Thus, RMSE 

serves as a more effective gauge of error in contrast to MSE. 
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1.8 Root Mean Squared Percentage Error (RMSPE) 

The root mean squared percentage error (RMSPE) is calculated by taking the square root of the sum of 

squared percentage discrepancies, divided by the total number of errors considered, and then 

multiplying by one hundred. The RMSPE can be interpreted without regard to the actual numerical 

values of the data, as it serves as a normalized metric. In contrast to other error metrics, an RMSE (or 

MSE or SSE) value of 10 from a dataset with a mean of 15 could indicate a more unfavorable outcome 

than the same value from a dataset with a mean of 1500. However, since RMSPE is normalized, lower 

values signify a more accurate fit, while larger values indicate less accuracy (Carpenter and Barthelemy, 

1994). 
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2. MULTIVARIATE LINEAR REGRESSION 

Multivariate linear regression aids in formulating first degree equations that encompass multiple 

independent variables. The fundamental structure for multivariate linear regression is,  
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In this context, a0…an represent the coefficients waiting to be uncovered, while x1...xn denote the 

independent variables. P stands for the dependent variable, reflecting the real outcome for the ith set 

of input data, and K signifies the number of data sets accessible for regression analysis. By applying 

the partial derivative operators, equation 5.5 simplifies to,
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The equation presented can be unraveled by aggregating the figures of both independent and 

dependent variables following the necessary procedures. 

3. REGRESSION EQUATION FOR STRENGTH 

The meticulously organized and comprehensive data that has been carefully compiled and utilized for 

the intricate and detailed regression analysis, which serves as the backbone of our research findings, is 

conveniently and clearly laid out for the reader's convenience in Table 1, while the complex and 

multifaceted regression equations that encapsulate the relationships within the data are thoughtfully and 

systematically presented in both Table 2 and Table 3, providing a thorough understanding of the 

analytical process. 

Table 1 Data Used for the Regression Analysis 

Beam 

Designat

ion 

First 

Cra

ck 

load 

(kN) 

Def. 

@ 

FC

L 

(m

m) 

Yiel

d 

Loa

d 

(kN

) 

Def. 

@ 

Yel

d 

Loa

d  

(m

m) 

Ultim

ate 

Load 

(kN) 

Def. 

@ 

UL 

(m

m) 

Wid

th of 

Crac

k 

(mm

) 

No. 

of 

Crac

ks 

Avera

ge 

Spaci

ng of 

Crack

s 

(mm) 

Spaci

ng of 

Stirru

ps 

Tensil

e 

streng

th for 

FRP 

E 

for 

FRP 

Deflecti

on 

ductilit

y 

Energ

y 

ductili

ty 

200 NS 0 10 0.95 25 2.6 50 9.24 0.4 8 140 100 0 0 3.55 6.74 

200 CS 0 12.5 1.05 27.5 2.85 57.5 10.8

2 

0.44 11 128 100 0 0 3.79 9.13 

100 NS 0 15 1.12 30 3.2 60 12.1 0.5 13 124 200 0 0 3.78 6.37 

100 CS 0 20 1.16 35.5 3.65 65 14.5

4 

0.58 16 116 200 0 0 3.98 7.88 
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200 NS 3 22.5 1.28 42.5 3.98 90 16.6 0.64 18 108 100 446.9 139

65 

4.17 8.61 

200 CS 3 25 1.34 50 4.18 100.5 18.7

6 

0.72 21 96 100 446.9 139

65 

4.48 8.59 

100 NS 3 27.5 1.48 54.5 4.33 110 20.3

4 

0.8 23 94 200 446.9 139

65 

4.69 9.89 

100 CS 3 30 1.64 60 4.62 120.5 22.5 0.88 25 90 200 446.9 139

65 

4.87 9.98 

200 NS 5 30 1.86 64.5 5.16 130 24.8 0.98 27 88 100 451.5 173

65 

4.8 10.4 

200 CS 5 32.5 2.1 68 5.82 135 26.2 1.2 28 84 100 451.5 173

65 

4.5 10.05 

100 NS 5 32.5 2.46 70 6.28 142.5 28.1 1.34 30 76 200 451.5 173

65 

4.48 10.32 

100 CS 5 35 3.1 72.5 6.85 145 30.4 1.52 33 68 200 451.5 173

65 

4.43 10.48 

 

Table 2 Data Used for the Regression Analysis for Experimental vs Predictions 

Specim

en 

Yield 

load(kN) 

deflectio

n at 

YL(mm) 

Ultimate 

load(KN) 

deflection at 

UL(mm) 

Energy 

ductility 

Deflection 

ductility 

Crack 

width(mm) 

Exp

t 

Pred Exp

t 

Pre

d 

Exp

t 

Pred Exp

t 

Pred Exp

t 

Pred Exp

t 

Pred Exp

t 

Pred 

200 NS 

0 

25 26.125 2.6 2.77 50 50 9.24 10.1975 6.74 7.75 3.55 3.77 0.4 0.365 

200 CS 

0 

27.5 26.125 2.85 2.77 57.5 52.1875 10.8

2 

10.1975 9.13 7.75 3.79 3.77 0.44 0.365 

100 NS 

0 

30 33.437

5 

3.2 3.46

5 

60 65.15625 12.1 13.6312

5 

6.37 7.815 3.78 3.89 0.5 0.5775 

100 CS 

0 

35.5 33.437

5 

3.65 3.46

5 

65 65.15625 14.5

4 

13.6312

5 

7.88 7.815 3.98 3.89 0.58 0.5775 

200 NS 

3 

42.5 48.093

75 

3.98 3.93 90 98.76562

5 

16.6 17.8331

25 

8.61 9.235 4.17 4.492

5 

0.64 0.6537

5 

200 CS 

3 

50 48.093

75 

4.18 3.93 100.

5 

98.76562

5 

18.7

6 

17.8331

25 

8.59 9.235 4.48 4.492

5 

0.72 0.6537

5 
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100 NS 

3 

54.5 55.406

25 

4.33 4.62

5 

110 111.7343

75 

20.3

4 

21.2668

75 

9.89 9.3 4.69 4.612

5 

0.8 0.8662

5 

100 CS 

3 

60 55.406

25 

4.62 4.62

5 

120.

5 

111.7343

75 

22.5 21.2668

75 

9.98 9.3 4.87 4.612

5 

0.88 0.8662

5 

200 NS 

5 

64.5 65.093

75 

5.16 5.68 130 131.6406

25 

24.8 25.6581

25 

10.4 10.28 4.8 4.492

5 

0.98 1.1537

5 

200 CS 

5 

68 65.093

75 

5.82 5.68 135 131.6406

25 

26.2 25.6581

25 

10.0

5 

10.28 4.5 4.492

5 

1.2 1.1537

5 

100 NS 

5 

70 72.406

25 

6.28 6.37

5 

142.

5 

144.6093

75 

28.1 29.0918

75 

10.3

2 

10.34

5 

4.48 4.612

5 

1.34 1.3662

5 

100 CS 

5 

72.5 72.406

25 

6.85 6.37

5 

145 144.6093

75 

30.4 29.0918

75 

10.4

8 

10.34

5 

4.43 4.612

5 

1.52 1.3662

5 

 

Table 3 Regression Equations 

Sl. 

No 
Parameter Regression Fitness 

1 First Crack Load 
0.046SS -0.032fFRP + 

0.002EFRP+9.06 
0.9769 

2 Deflection at First Crack Load 0.004SS -0.008fFRP + 0EFRP+0.475 0.8912 

3 Yield Load 
0.075SS -0.111 fFRP + 

0.005EFRP+18.25 
0.9731 

4 Deflection at Yield Load 
0.007SS -0.014 fFRP + 

0.001EFRP+1.99 
0.9597 

5 Ultimate Load 
0.133SS -0.205 fFRP + 

0.01EFRP+38.12 
0.9597 

6 Deflection at Ultimate Load 
0.036SS - 0.057fFRP + 

0.002EFRP+6.28 
0.9768 

7 Width of Crack  0.002SS -0.004 fFRP + 0EFRP+0.17 0.9462 

8 No. of Cracks 
0.045SS -0.052 fFRP +0.002 

EFRP+5.25 
0.9699 

9 Average Spacing of Cracks  
(-)0.127SS +0.103 fFRP -0.005 

EFRP+146 
0.9567 

10 Deflection Ductility 2.3E-06+0.001688+0.0012+3.65 0.81 

11 Energy Ductility 
0.000316+ 

(-)0.00656+0.00065+7.685 
0.87 

Note: Efrp - Elasticity Modulus of FRP, ffu – Tensile Strength of FRP and  

Tk – Thickness of FRP 
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4. OBSERVATIONS ON THE REGRESSION EQUATIONS 

The sophisticated regression equations were meticulously employed for the purpose of forecasting both 

the ultimate load and the ultimate deflection values, which are critical parameters in structural 

engineering and material science. A thorough examination of the various measures of fitness associated 

with the regression indicates that the multivariate linear regression technique possesses the capability 

to accurately estimate prediction values for an array of factors, including but not limited to yield load, 

yield deflection, ultimate load, ultimate deflection, deflection ductility, energy ductility, deflection 

ductility ratio, energy ductility ratio, the total number of cracks present, the maximum crack width 

observed, and the overall energy absorption capacity of GFRP (Glass Fiber Reinforced Polymer) 

strengthened reinforced concrete beams. The root mean square error values, which serve as indicators 

of the model's predictive accuracy, exhibited a range of variability from a minimum of 0.17 to a 

maximum of 13.76, showcasing the nuanced performance of the regression models across different 

scenarios. 

However, it is important to note that linear regressions, by their very nature, are inherently constrained 

in their capacity to accurately model exceedingly comprehensive sets of data, particularly because the 

first order regression parameters endeavor to align themselves with a monotonically varying linear 

relationship that lacks the necessary curvature to fully encapsulate the complexities of the prediction 

parameter being analyzed. 

In a comparative analysis, the predictions generated from the regression equations were meticulously 

juxtaposed against empirical experimental values, and the outcomes of this comparison were visually 

represented in Figures 2 to 8, providing a clear illustration of the efficacy of the regression models in 

real-world applications. 

 

Figure 2 Specimens Predictions for Yield Load (KN)  

http://philstat.org.ph/


Mathematical Statistician and Engineering Applications 

ISSN: 2326-9865 

Vol. 72 No.10 (2023) 

http://philstat.org.ph 

 

99 

 

 

Figure 3 Specimens Predictions for Ultimate Load (KN)  

 

Figure 4 Specimens Predictions for Energy Ductility  
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Figure 5 Specimens Predictions for Deflection Ductility  

 

Figure 6 Specimens Predictions for Deflection at YL(mm)   
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Figure 7 Specimens Predictions for Deflection at UL(mm)   

 

Figure 8 Specimens Predictions for Crack width (mm)   

 

Conclusion 

 After conducting the Regression analysis, the fitness has been obtained as 0.801. The above 

observation clearly indicates the validity of the proposed regression equation for the purpose of 

estimating the performance parameters under both static and cyclic loading conditions. This research 

tried to explain the general analysis of Regression Analysis and various regression equation have been 

observed to know the performance of them. From the observation it was found it is posited that the 

multivariate linear regression possesses the capability to estimate predictive values with an acceptable 
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degree of precision regarding yield load, yield deflection, ultimate load, ultimate deflection, deflection 

ductility, and so forth. 
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